https://ogma.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Functional characterization of native, high-affinity GABAA receptors in human pancreatic ß cells https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:32032 A receptors in human islet β cells as biological sensors and reveal that 100–1000 nM GABA elicit the maximal opening frequency of the single-channels. In saturating GABA, the channels desensitized and stopped working. GABA modulated insulin exocytosis and glucose-stimulated insulin secretion. GABAA receptor currents were enhanced by the benzodiazepine diazepam, the anesthetic propofol and the incretin glucagon-like peptide-1 (GLP-1) but not affected by the hypnotic zolpidem. In type 2 diabetes (T2D) islets, single-channel analysis revealed higher GABA affinity of the receptors. The findings reveal unique GABAA receptors signaling in human islets β cells that is GABA concentration-dependent, differentially regulated by drugs, modulates insulin secretion and is altered in T2D.]]> Wed 10 Jul 2019 15:15:48 AEST ]]> Selective modulation of different GABA<sub>A</sub> receptor isoforms by diazepam and etomidate in hippocampal neurons https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:23577 A (γGABAA) receptors increases channel conductance by facilitating protein interactions involving the γ2-subunit amphipathic (MA) region, which is found in the cytoplasmic loop between transmembrane domains 3 and 4 (Everitt et al., 2009). However, many drugs, predicted to act on different GABAA receptor subtypes, increase channel conductance leading us to hypothesize that conductance variation in GABAA receptors may be a general property, mediated by protein interactions involving the cytoplasmic MA stretch of amino acids. In this study we have tested this hypothesis by potentiating extrasynaptic GABAA currents with etomidate and examining the ability of peptides mimicking either the γ2- or δ-subunit MA region to affect conductance. In inside-out hippocampal patches from newborn rats the general anesthetic etomidate potentiated GABA currents, producing either an increase in open probability and single-channel conductance or an increase in open probability, as described previously (Seymour et al., 2009). In patches displaying high conductance channels application of a δ(392-422) MA peptide, but not a scrambled version or the equivalent γ2(381-403) MA peptide, reduced the potentiating effects of etomidate, significantly reducing single-channel conductance. In contrast, when GABA currents were potentiated by the γ2-specific drug diazepam the δ MA peptide had no effect. These data reveal that diazepam and etomidate potentiate different extrasynaptic GABAA receptor subtypes but both drugs modulate conductance similarly. One interpretation of the data is that these drugs elicit potentiation through protein interactions and that the MA peptides compete with these interactions to disrupt this process.]]> Sat 24 Mar 2018 07:12:45 AEDT ]]>